DDR4 и Ryzen. Нюансы настройки и разгона памяти на платформе AMD AM4 / Overclockers.ua

DDR4 и Ryzen. Нюансы настройки и разгона памяти на платформе AMD AM4 / Overclockers.ua Женщине

Procodt, rtt и cad_bus: что это такое и с чем его едят?

Я хочу обратить особое внимание на важные термины , такие как «procODT», «RTT» и «CAD_BUS», описать, на что они влияют, как их настраивать и что они могут нам рассказать.

Как я упоминал ранее, пользователи столкнулись с огромным количеством проблем, когда вышло первое поколение процессоров Zen. В обзорах была паника, а на форумах было очень мало настоящих экспертов. Единственная тема, которая была — «память плохо разгоняется».

Один из самых частых вопросов, который можно найти в форумах о системах Ryzen: «От чего зависит разгон памяти?».

Итак, давайте разбираться. В нашем случае успех разгона зависит от трех компонентов: материнской платы, IMC (контроллера памяти) и самой памяти.

Основные операции dram

Существует пять основных операций (или четыре, если объединить чтение и запись в одну), которые необходимо выполнить при доступе к данным в DRAM.

Активация открывает одну из строк DRAM в банке и копирует данные из открытой строки в буфер строк.

Восстановление гарантирует, что заряд, который расходуется из каждой ячейки в строке DRAM во время активации, восстанавливается до полного уровня, чтобы предотвратить потерю данных.

Чтение и запись могут выполняться после копирования данных активированной строки в буфер строк.

Precharge освобождает данные из буфера строк, когда контроллер памяти выполняет чтение и запись в активированную строку, и подготавливает банк для активации другой строки.

Из них задержка доступа DRAM в основном состоит из задержки трех операций: активация, восстановление и предварительная зарядка.

На рисунке выше показана временная шкала команд, выполненных для чтения (вверху) или записи (внизу) для одной строки данных кэша. Контроллер памяти выдает четыре команды: (1) ACT (активировать), (2) READ или (3) WRITE и (4) PRE (предварительная зарядка).

Обратите внимание, что восстановление не имеет явной команды, а вместо этого запускается автоматически после команды ACT. Время, затрачиваемое на каждую операцию, определяется набором временных параметров, которые определяются поставщиками DRAM. Хотя каждая команда работает с гранулярностью строк, для простоты мы описываем, как операции DRAM влияют на одну ячейку DRAM.

В начальном предварительно заряженном состоянии (1) битовая линия поддерживается на уровне напряжения VDD / 2, где VDD — полное напряжение питания DRAM. Линия слова находится в 0 В, и поэтому битовая линия отключена от конденсатора. После того, как контроллер памяти выдает команду ACT (2), словосочетание повышается до Vh, тем самым соединяя конденсатор ячейки DRAM с разрядной линией.

Так как в этом примере напряжение на конденсаторе выше, чем на разрядной линии, заряд поступает на разрядную линию, повышая уровень напряжения до VDD / 2 δ. Этот процесс называется разделением заряда. Затем усилитель считывания измеряет отклонение на битовой линии и соответственно усиливает это отклонение (3).

Как только усилитель считывания достаточно усилил данные в битовой линии (например, уровень напряжения достигнет 3VDD / 4), контроллер памяти может выдать команду READ или WRITE для доступа к данным ячейки в буфере строк. Время, необходимое для достижения этого состояния (3) после команды ACT, задается параметром синхронизации tRCD, как показано на первом рисунке.

После того, как команда READ или WRITE введена, фаза чувствительного усиления продолжает управлять напряжением на битовой линии (4), пока уровень напряжения битовой линии и ячейка не достигнут VDD. Другими словами, исходный уровень заряда ячейки полностью восстанавливается до исходного значения для READ или корректно обновляется до нового значения для WRITE.

Для запросов на чтение DRAM задержка для ячейки, которая будет полностью восстановлена после ACT, определяется параметром синхронизации tRAS. Для запросов записи DRAM время, необходимое для полного обновления ячейки, определяется tWR. После восстановления битовая линия может быть предварительно заряжена с помощью команды PRE, чтобы подготовить подмассив для будущего доступа к другой строке.

3dmark

Довольно неплохая реакция на разгон оперативной памяти, в лучшем сценарии мы можем наблюдать прирост в размере 17% по очкам. Так же хочу отметить один нюанс, сборка Windows 10 1903 и чипсетные драйверы 19.10 содержат обновленный алгоритм взаимодействия планировщика ОС с многоядерными процессорами Ryzen. Будьте внимательны, мои результаты могут быть куда хуже ваших из-за разных версий Windows.

Assassin’s creed odyssey

В этой игре даже при минимальных настройках качества я получил упор в видеокарту. Минимальная загрузка видео ядра составила 85%. Это означает, что тест является гибридной версией, и для раскрытия потенциала процессора Ryzen 7 2700X вам может потребоваться видеокарта, более мощная, чем GeForce GTX 1080 Ti.

Тем не менее, мы можем наблюдать значительное увеличение производительности из-за качественного разгона оперативной памяти ( 30% fps).

Hynix cjr 3200 mhz cl14 (multi rank)

  • SOC Voltage: 1.025 V.
  • Memory Voltage: 1.37 V.
  • Power Down Mode: disabled.
  • Gear Down Mode: disabled.
  • procODT: 48 ohm.
  • RTT_NOM: 34 ohm (RZQ/7).
  • RTT_WR: disabled.
  • RTT_PARK: 40 ohm (RZQ/6).

Metro exodus

Вы можете спросить, почему я выбрал такие низкие настройки графики. Все просто, я хотел показать вам результаты, которые не будут зависеть от возможностей видеокарты.

Эта игра (как и многие другие) хорошо отреагировала на разгон, мы видим преимущество до 28% (Avg fps). Минимальный fps в этом тесте был довольно непредсказуемым. Возможно, причина в посредственной оптимизации игрового движка или планировщика Windows.

Sisoftware sandra

Тест, который демонстрирует эффективность процессорной взаимосвязи, эффективность обработки ядрами блоков данных и передачи их другим ядрам для дальнейшей параллельной обработки (парадигма производитель-потребитель) разных размеров и цепочек разных размеров. На простом языке — тест Infinity Fabric.

В этом тесте я хотел показать вам, как время и частота влияют на многопоточную производительность процессора. Мы видим улучшения в задержке (21–28%) и пропускной способности Infinity Fabric ( 17%). Это уникальное явление, которое доступно только процессорам Ryzen.

The witcher 3

Тест проводился в городе Новиград с одинаковым маршрутом для всех предустановок.

Эта игра любит тюнинг ОЗУ. Один из лучших результатов — 47% к среднему fps. Это означает, что вы можете наслаждаться комфортным игровым процессом на мониторе с частотой развертки 144 Гц.

Алгоритм настройки системы

Инструмент, который будет нам помогать с рекомендациями — DRAM Calculator for Ryzen. Самый главный, фундаментальный шаг — это запуск системы на определенной частоте, которую мы хотим получить. Для этого нам потребуется вручную установить такие настройки в UEFI:

профиль XMP памяти (он может называться по-разному, смысл от этого не меняется), частоту для оперативной памяти (которую мы хотим получить), установить частоту BCLK (если присутствует такая настройка в прошивке), тайминги (которые рекомендует калькулятор), напряжение для SOC и DRAM (рекомендации калькулятора)

и procODT RTT (NOM, WR и PARK). Не забывайте про важный нюанс, что материнская плата или оперативная память может не справиться с вашими амбициями, потому советую посетить страницу поддержки вашей материнской платы и посмотреть QVL-список, в котором будут указаны частоты, на которых плата в заводских условиях функционировала без ошибок. Эта частота и будет нашей отправной точкой. Зачастую это 3000–3200 МГц.

Параметры procODT RTT (NOM, WR и PARK) мы будем подбирать так, чтоб система имела минимальное кол-во ошибок. Тестовый пакет TM5 0.12 (Basic Preset). Безусловно, от всех ошибок мы не сможем избавиться, и для этого нам нужен будет следующий шаг.

Цель следующего шага — поиск самого оптимального напряжения для DRAM и SOC, при которых система будет иметь минимальное кол-во ошибок. Сначала подбираем напряжение для SOC, а затем для DRAM (калькулятор вам подскажет диапазон). Для отлова ошибок используем тестовый пакет TM5 0.12 (Basic Preset).

В половине случаев вы можете на данном этапе получить полностью стабильную систему. Если тестовый пакет TM5 0.12 не находит ошибок, то вы должны увеличить спектр тестовых программ для проверки стабильности. Вы можете использовать LinX, HCI, Karhu, MEMbench и другие программы. В случае если вышеописанные утилиты нашли ошибку, то вам стоит перейти к следующему шагу, отладочному.

На отладочном шаге главная цель — это изменение определенных таймингов, указанные на иллюстрации ниже.

На данном этапе вы должны проверить по очереди влияние каждого тайминга на стабильность системы. Примечание: я не рекомендую изменять все задержки сразу, постарайтесь набраться терпения. Если тестируемый тайминг никак не улучшает ситуацию, мы его возвращаем на место и проверяем по списку следующую задержку.

На этом шаге основной инструктаж по отладке системы для простых пользователей заканчивается. Дальнейшие шаги я могу посоветовать более опытным оверклокерам, которые знакомы с разгоном достаточно давно.

Тонкая настройка CAD_BUS

и корректировка дополнительных напряжений.

На каждой иллюстрации присутствуют списки параметров, которые мы используем или изменяем. Эти списки я сформировал так, чтобы более приоритетные настройки, которые могут помочь улучшить стабильность, вы проверили первыми. Безусловно, вы можете пойти своей дорогой, четких правил и закономерностей нет.

Встроенный контроллер памяти (imc)

Intel: LGA1151

IMC от Intel достаточно устойчивый, поэтому при разгоне он не должен быть узким местом. Ну а чего ещё ждать от 14 нм?

Для разгона RAM необходимо изменить два напряжения: System Agent (VCCSA) и IO (VCCIO). Не оставляйте их в режиме “Auto”, так как они могут подать опасные уровни напряжения на IMC, что может ухудшить его работу или даже спалить его.

DDR4 и Ryzen. Нюансы настройки и разгона памяти на платформе AMD AM4 / Overclockers.ua
предоставлено: Silent_Scone.


Я не рекомендовал бы подниматься выше 1,25 В на обоих.

Ниже – предлагаемые мной значения VCCSA и VCCIO для двух одноранговых модулей DIMM:

Если модулей больше, и/или используются двуранговые модули, то может потребоваться более высокое напряжение VCCSA и VCCIO.

tRCD и tRP взаимосвязаны, то есть, если вы установите tRCD на 16, а tRP на 17, то оба будут работать с более высоким таймингом (17). Это ограничение объясняет, почему многие чипы работают не очень хорошо на Intel и почему для Intel лучше подходит B-die.

Как быть Леди:  ребенок укачивает 'сам себя'. Усыновление


В UEFI Asrock и EVGA оба тайминга объединены в tRCDtRP. В UEFI ASUS tRP скрыт. В UEFI MSI и Gigabyte tRCD и tRP видны, но попытка установить для них разные значения приведет просто к установке более высокого значения для обоих.

Ожидаемый диапазон латентности памяти: 40-50 нс.

AMD: AM4

В Ryzen 1000 и 2000 IMC несколько привередлив к разгону и может не дать столь же высоких частот, как Intel. IMC Ryzen 3000 намного лучше и более-менее наравне с Intel.


SoC voltage – это напряжение для IMC, и, как и в случае с Intel, не рекомендуется оставлять его в “Auto” режиме. Тут достаточно 1,0 – 1,1 В, поднимать выше смысла нет.

На Ryzen 2000 (а возможно и на 1000 и 3000), вольтаж выше 1,15 В может отрицательно повлиять на разгон.

Дополнительные советы

  • Увеличение частоты DRAM на 200 МГц обычно поднимает тайминги tCL, tRCD и tRP на 1 с сохранением латентности, зато повышается пропускная способность. К примеру, 3000 15-17-17 имеет ту же латентность, что и 3200 16-18-18, однако 3200 16-18-18 обладает большей пропускной способностью. 
  • Второстепенные и третьестепенные тайминги (за исключением tRFC) в частотном диапазоне не сильно изменяются, если вообще изменяются. Если у вас второстепенные и третьестепенные тайминги стабильно работают на частоте 3200 МГц, то скорее всего они и на 3600 МГц будут работать так же, и даже на 4000 МГц, при условии полноценной работы чипов, IMC и материнской платы.

Intel

AMD


Увеличение CLDO_VDDP похоже влияет положительно на частотах выше 3600 МГц, так как, по-видимому, улучшается гибкость и, следовательно, становится меньше ошибок.

Также будет интересно:

Подготовлено по материалам GitHub.

Зависимость рабочего напряжения dram от procodt и rtt

Я провел небольшой тест, в котором использовал разные настройки для напряжения procODT и DRAM. Идея состоит в том, чтобы установить минимально возможное значение DRAM Voltage и избежать BSOD во время теста.

На основании результатов, полученных в этом простом и коротком тесте, мы можем сделать вывод: после изменения procODT стабильное рабочее напряжение DRAM может измениться. Также имеется небольшое влияние RTT на рабочее напряжение памяти.

Значения trcd и tras могут быть значительно ниже, чем в даташитах. как так?

Обычные микросхемы DRAM выполняют операции активации и восстановления с использованием фиксированной задержки, которая определяется значением параметров синхронизации, показанных на первом изображении. Однако существуют способы, с помощью которых задержки для активации и восстановления могут быть уменьшены путем использования текущего уровня заряда ячейки.

Если элемент имеет высокий уровень заряда, соответствующий процесс возмущения напряжения на битовой линии во время активации происходит быстрее, и, следовательно, усилителю считывания требуется меньше времени для достижения состояний 3 и 4 на втором изображении.

ChargeCache отслеживает строки, к которым недавно был получен доступ, что означает, что их ячейки имеют высокий уровень заряда, поскольку с момента последнего восстановления ячеек до полного уровня заряда прошло только короткое время. Поэтому, если недавно активированная строка снова активируется в течение короткого интервала времени (например, 1 мс)

, ChargeCache использует более низкие значения tRCD и tRAS для строки, что уменьшает общую задержку доступа к DRAM. Аналогичный подход может быть применен для уменьшения времени восстановления. В обычном чипе DRAM каждая команда ACT запускает операцию восстановления, которая полностью восстанавливает уровень заряда ячеек в активированном ряду.

Существует также механизм Restore Truncation, который частично восстанавливает уровень заряда ячейки ровно настолько, чтобы сохранять правильные данные — до следующего обновления ячейки. Одним из элементов управления для этого механизма является время tWR и tRAS.

Некоторые предустановки, опубликованные в моей статье, используют эти механизмы, поэтому я советую вам забыть о типичных формулах, которые вы можете найти в Интернете.

Контроллер памяти

Оба поколения контроллеров памяти Ryzen в большинстве случаев ограничены частотой UCLK 1733–1766 МГц (от DDR-3466 до DDR-3525). Безусловно есть случаи, когда контроллер может работать и на более высоких частотах. Чтобы упростить жизнь нашему контроллеру памяти, можно использовать модули, способные работать с очень низким procODT, что значительно меняет согласование сигналов.

В приведенной выше таблице показано, как procODT / RTT может меняться с ростом частоты DRAM.

Дабы улучшить восприятие этой информации, представьте циферблаты механических часов. procODT будет считать часы, RTT_PARK будет считать минуты, а CAD будет действовать как секундная стрелка. Для каждой частоты циферблаты на часах будут показывать разные результаты.

Чтобы быть готовы к подобному повороту событий, мы должны проверить сначала соседние значения RTT_PARK и только затем попытаться изменить procODT. В большинстве случаев кардинальных изменений в прошивках PMU (контроллера памяти) нет. Так же вам не следует спешить менять САПР, поскольку в нем слишком много переменных, и вы можете потерять много времени, пытаясь стабилизировать систему.

Существует несколько алгоритмов выбора САПР, но на данный момент я не могу с уверенностью сказать, насколько они эффективны. Я считаю, что САПР не может иметь кардинальных отличий от базовых значений 24-24-24-24, и в большинстве случаев одно из значений можно перемещать вверх или вниз. То есть опция 24-30-24-24 может иметь дополнительный запас безопасности для частоты 3466 МГц.

Из моих предпочтений это 20-20-20-20, в данном режиме присутствует чуть больший запас «прочности», когда оперативная память подбирается к 52 градусам.

В будущем я постараюсь дополнить эту статью поиском идеального САПР.

Материнская плата

Большинство плат на базе чипсетов AMD 300 серии имеют T-топологию, и максимальная тактовая частота памяти в большинстве случаев ограничена 3466 МГц. Но есть «фишка», которая позволить нам незначительно подвинуть этот предел. Настройка САПР.

Если нам удастся настроить САПР, то мы сможем получить 3600 МГц. Чтобы понять, почему разгон ограничен такой довольно низкой частотой, нужно взглянуть на печатную плату материнской платы.

Каждая сигнальная трасса на печатной плате является проводником, сигнальной линией, которая может повлиять на другие сигнальные линии. Кроме того, существует вероятность паразитных связей (паразитная индуктивность и высокочастотные помехи). Чтобы бороться с отрицательными связями, каждый разработчик материнской платы должен правильно спроектировать все сигнальные трассы.

Выше изображено такое изменение конструкции, которое добавляет «кривую», заменяя прямую линию. Это изменение может кардинально изменить возможности сигнальной линии.

Также форм-фактор, количество слоев печатной платы и состав проводников влияют на качество материнской платы. Для плат более дорогого сегмента часто выделяется больше времени на разработку и обычно используются более качественные базовые компоненты. Еще одним ключевым отличием материнских плат на чипсетах серии «X» является увеличенное количество слоев PCB (вместо 3–4 слоев мы имеем 6–8).

Умные слова это, конечно, интересно, но как распознать качественную материнскую плату? procODT. И чем ниже рабочий procODT, тем лучше результаты разгона, которые вы можете получить на этой материнской плате. Специально для лучшего понимания я создал несколько таблиц, которые могут продемонстрировать вам различия.

Материнские платы и топология

Существует очень много материснких плат на разных чипсетах, в различных форм-факторах и с разными скрытыми особенностями. Ключевой особенностью в разгоне памяти на системах Ryzen является DIMM-топология, количество слоев PCB и DIMM-слотов.

Рекордсменом в разгоне оперативной памяти являются двухслотовые материнские платы, например ASUS ROG Strix X470-I Gaming.

Отсутствие двух дополнительных слотов серьезно влияет на качество сигналов и переотражения на линии. Что касается предельной частоты разгона без использования воды или азота — около 3866–3933 МГц.

Далее идут платы с топологией Daisy Chain, их преимущество заключается в оптимизированной длине линий (шины) между процессором и слотами А2 и В2.

Типичными представителями являются ASUS ROG Crosshair VII Hero, ASUS Prime X470-Pro и MSI X470 Gaming M7 AC.

3800 МГц это максимум, который доступен этим представителям при использовании двух модулей single rank и без использования экстримальных способов охлаждения.

При использовании четырех модулей разгон несколько хуже, предел находится на частотах 3400–3466 МГц.

Замыкают список платы с Т-топологией, которые имеют посредственные результаты разгона при использовании двух модулей оперативной памяти, но прекрасные результаты, если установлено четыре модуля (до 3533 МГц включительно). Яркие примеры — это Asrock X470 Taichi и ASUS ROG Crosshair VI.

Микросхемы (чипы памяти)

Отчёты Thaiphoon Burner

По общему мнению, свои отбракованные низкосортные чипы Micron реализует под брендом SpecTek.  Многие стали называть этот чип “Micron E-die” или даже просто “E-die”. Если в первом случае ещё куда ни шло, то во втором уже возникает путаница, поскольку подобная маркировка («буква-die») используется у микросхем Samsung, например – “4 Гб Samsung E-die”.

О рангах и объёме

Масштабирование напряжения

Масштабирование напряжения попросту означает, как чип реагирует на изменение напряжения. Во многих микросхемах tCL масштабируется с напряжением, что означает, что увеличение напряжения может позволить вам снизить tCL. В то время как tRCD и tRP на большинстве микросхем, как правило, не масштабируются с напряжением, а это означает, что независимо от того, какое напряжение вы подаёте, эти тайминги не меняются.

Насколько я знаю, tCL, tRCD, tRP и, возможно, tRFC могут (либо не могут) видеть масштабирование напряжения. Аналогичным образом, если тайминг масштабируется с напряжением, это означает, что вы можете увеличить напряжение, чтобы соответствующий тайминг работал на более высокой частоте.

DDR4 и Ryzen. Нюансы настройки и разгона памяти на платформе AMD AM4 / Overclockers.ua
Масштабирование напряжения CL11

На графике видно, что tCL у CJR 8 Гб масштабируется с напряжением почти ровно до 2533 МГц. У B-die мы видим идеально-ровное масштабирование tCL с напряжением.

Некоторые старые чипы Micron (до Rev. E) известны своим отрицательным масштабированием с напряжением. То есть при повышении напряжения (как правило, выше 1,35 В) они становятся нестабильными на тех же таймингах и частоте. Ниже приведена таблица некоторых популярных чипов, показывающая, какие тайминги в них масштабируются с напряжением, а какие нет:


Тайминги, которые не масштабируются с напряжением, как правило необходимо увеличивать с частотой. Масштабирование напряжения tRFC у B-die.

Примечание: Шкала tRFC в тактах (тиках), не во времени (нс).

Ожидаемая максимальная частота

Ниже приведена таблица предполагаемых максимальных частот некоторых популярных чипов:

* – результаты тестирования CJR у меня получились несколько противоречивыми. Я тестировал 3 одинаковых планки RipJaws V 3600 CL19 8 Гб. Одна из них работала на частоте 3600 МГц, другая – на 3800 МГц, а последняя смогла работать на 4000 МГц. Тестирование проводилось на CL16 с 1,45 В.


Не ждите, что одинаковые, но разнородные по качеству, чипы производителя одинаково хорошо разгонятся. Это особенно справедливо для B-die.

Биннинг

Суть биннинга заключается в разделении производителем полученной на выходе продукции «по сортам», качеству. Как правило, сортировка производится по демонстрируемой при тестировании частоте.

Как быть Леди:  Что делать, когда близкий человек выжил из ума? - Страна Мам

Чипы, показывающие одну частоту, производитель отделяет в одну «коробку», другую частоту – в другую «коробку». Отсюда и название процедуры – “binning” (bin – ящик, коробка).


B-die из коробки «2400 15-15-15» намного хуже чем из коробки «3200 14-14-14» или даже из «3000 14-14-14». Так что не ждите, что третьесортный B-die даст образцовые показатели масштабирования напряжения.

Чтобы выяснить, какой из одинаковых чипов обладает лучшими характеристиками на одном и том же напряжении, нужно найти немасштабируемый с напряжением тайминг.

Просто разделите частоту на этот тайминг, и чем выше значение, тем выше качество чипа. Например, Crucial Ballistix 3000 15-16-16 и 3200 16-18-18 оба на чипах Micron Rev. E. Если мы разделим частоту на масштабируемый с напряжением тайминг tCL, мы получим одинаковое значение (200). Значит ли это, что обе планки – одного сорта? Нет.

А вот tRCD не масштабируется с напряжением, значит его необходимо увеличивать по мере увеличения частоты. 3000/16 = 187,5 против 3200/18 = 177,78.

Как видите, 3000 15-16-16 более качественный чип, нежели 3200 16-18-18. Это означает, что чипы 3000 15-16-16 очевидно смогут работать и как 3200 16-18-18, а вот смогут ли 3200 16-18-18 работать как 3000 15-16-16 – не факт. В этом примере разница в частоте и таймингах невелика, так что разгон этих планок будет, скорее всего, очень похожим.

Максимальное рекомендованное повседневное напряжение

Спецификация JEDEC указывает (стр. 174), что абсолютный максимум составляет 1,50 В

Напряжения, превышающие приведенные в разделе «Абсолютные максимальные значения», могут привести к выходу устройства из строя. Это только номинальная нагрузка, и функциональная работа устройства при этих или любых других условиях выше тех, которые указаны в соответствующих разделах данной спецификации, не подразумевается. Воздействие абсолютных максимальных номинальных значений в течение длительного периода может повлиять на надежность.

Я бы советовал использовать 1,5 В только на B-die, поскольку известно, что он выдерживает высокое напряжение. Во всяком случае, у большинства популярных чипов (4/8 Гб AFR, 8 Гб CJR, 8 Гб Rev. E, 4/8 Гб MFR) максимальное рекомендуемое напряжение составляет 1,45 В.

Ранговость

Ниже показано, как самые распространенные чипы ранжируются с точки зрения частоты и таймингов.

Нахождение максимальной частот

1. На Intel следует начинать с 1.15 В VCCSA и VCCIO. 


На AMD начинать нужно с 1.10 В SoC. Напряжение SoC может называться по-разному в зависимости от производителя.

Обратите внимание, что это добавочное напряжение. Базовое напряжение изменяется автоматически при увеличении частоты DRAM. Напряжение 0,10 В на частоте 3000 МГц может привести к фактическому напряжению 1,10 В, а 0,10 В на частоте 3400 МГц приводит уже к фактическому напряжению 1,20 В. MSI: CPU NB/SOC.

2. Установите напряжение DRAM 1,4 В. Для планок на чипах Micron/SpecTek (за исключением Rev. E) следует установить 1,35 В.

3. Выставите основные тайминги следующим образом: 16-20-20-40 (tCL-tRCD-tRP-tRAS). Подробнее об этих таймингах читайте тут (на англ.)

4. Постепенно увеличивайте частоту DRAM до тех пор, пока Windows не откажет. Помните об ожидаемых максимальных частотах, упомянутых выше. На Intel, быстрый способ узнать, нестабильны ли вы, это следить за значениями RTL и IOL. Каждая группа RTL и IOL соответствует каналу.

В каждой группе есть 2 значения, которые соответствуют каждому DIMM. Используйте Asrock Timing Configurator. Поскольку у меня обе планки стоят во вторых слотах каждого канала, мне нужно посмотреть на D1 в каждой группе RTL и IOL. Значения RTL у планок не должны разниться между собой более чем на 2, а значения IOL более чем на 1.

В моём случае, RTL разнятся ровно на 2 (53 и 55), а значения IOL не разнятся вовсе (7 у обоих планок). Все значения в пределах допустимых диапазонов, однако имейте в виду, что это ещё не значит, что всё действительно стабильно.

На Ryzen 3000 – убедитесь, что частота Infinity Fabric (FCLK) установлена равной половине вашей действующей частоты DRAM.

5. Запустите тест памяти на свой выбор.

6. При зависании/краше/BSOD, верните частоту DRAM на ступень ниже и повторите тестирование.

7. Сохраните ваш профиль разгона в UEFI.

8. Теперь вы можете либо попытаться перейти на ещё более высокую частоту, либо начать подтягивать тайминги. Ее забывайте об ожидаемых максимальных частотах, о которых мы говорили ранее. Если вы достигли пределов возможностей чипа и/или IMC, то самое время заняться оптимизацией таймингов.

Оперативная память

Я часто слышу на форумах «там есть Samsung B-die, но они работают на низкой частоте и с огромным напряжением, этого не может быть, виновато AMD». Я объясню. Модуль RAM состоит не только из микросхем от конкретного производителя, но и из печатной платы (она тоже имеет определённое количество слоев), на которой мы найдем сотни сигнальных линий. Конденсаторы (обвязка) и, конечно, чип-биннинг оказывают огромное влияние.

Например, мы можем найти в магазинах оперативную память от Corsair — Vengeance RGB Pro 3600MHz C16, которая использует тот самый знаменитый B-die, но мы не найдем рекордов на этом продукте. Рассмотрим другой пример — G.Skill Sniper X F4-3400C16D, который не выглядит «вкусным» по сравнению с предыдущим комплектом от Corsair.

Нюанс. Так как модуль памяти несет на себе несколько чипов памяти, может возникнуть ситуация, когда один из чипов будет иметь иные вольт-частотные характеристики. Такие чипы могут потребовать на несколько шагов больше напряжения для стабилизации на определенной частоте, чем их братья и сестры.

При этом другие микросхемы могут стать нестабильными из-за повышенного напряжения. Идеальным вариантом для пользователя является покупка набора с заводским разгоном более 3600 МГц. Это даст вам дополнительную гарантию того, что все чипы могут достигать целевой частоты (заводской бининг все же штука полезная).

Оптимизация таймингов

Обязательно после каждого изменения запускайте тест памяти и бенчмарк-тест, чтобы убедиться в повышении производительности.

На процессорах Ryzen 3000 с одним CCD пропускная способность записи должна составлять 90-95% от половины теоретической максимальной пропускной способности. Можно достичь половины теоретической максимальной пропускной способности записи. См. здесь (англ.)

1.AMD:


Intel:

2. Я бы рекомендовал для начала подтянуть некоторые второстепенные тайминги в соответствии с таблицей ниже, поскольку они могут ускорить тестирование памяти.

Минимальный tFAW должен равняться 4-х кратному значению tRRDS. Необязательно, чтобы все тайминги выставлялись в одном пресете. Вы, например, можете выставить tRRDS tRRDL tFAW в пресете “Tight”, а tWR – в пресете “Extreme”.

3. Далее идут основные тайминги (tCL, tRCD, tRP).

4. Далее идёт tRFC. По умолчанию для чипов 8 Гб установлено значение 350 нс (обратите внимание на единицу измерения).


Ниже приведена таблица типичных значений tRFC в нс для наиболее распространенных чипов:

5. Оставшиеся второстепенные тайминги я предлагаю выставить следующим образом:

На Intel значения таймингов tWTRS/L следует сначала оставить в “Auto”, изменяя вместо них значения tWRRD_dg/sg соответственно. Уменьшение tWRRD_dg на 1 приведет к уменьшению tWTRS на 1. Аналогично с tWRRD_sg. Как только они достигнут минимума, вручную установите tWTRS/L.

6. Третьестепенные тайминги:


Пользователям AMD будет полезен этот текст (англ.)

Я предлагаю так:

Пользователям Intel следует настраивать третьестепенные тайминги группой за раз, как видно из таблицы предлагаемых мной значений.

А тут тайминги на B-die, к сведению.

tREFI – это тоже тайминг, позволяющий повысит ьпроизводительность. В отличие от всех других таймингов, чем выше его значение – тем лучше.


Не стоит слишком увлекаться им, поскольку перепады температур окружающей среды (например, зима-лето) могут быть достаточными для возникновения нестабильности.

7. Также можно увеличить напряжение DRAM, чтобы ещё больше снизить тайминги. Вспомните про масштабирование напряжения чипов и максимальное рекомендованное повседневное напряжение, о чём мы говорили выше.

Дополнительно: Настройка таймингов DRAM на ASUS ROG MAXIMUS XI APEX

Полезные советы и хитрости

  • Не используйте слишком высокие напряжения для SOC и DRAM. Калькулятор подскажет вам, в каком диапазоне значений вы должны попытаться получить стабильный результат. Как правило, лучшие значения SOC находятся в диапазоне 1,025–1,05 В для десктопов и 0,975–1,025 для HEDT.
  • Джиттер. Отклонение цифрового сигнала в результате отражений, межсимвольных помех, перекрестных помех, колебаний PVT (напряжение–температура–процесс) и других факторов составляет джиттер. Некоторый джиттер просто случайный.

Яркий пример я даже записал на видео, память потеряет стабильность, когда прогреется до 52,3 градусов. В прочем, в этом ничего особенного, дискотеку для эпилептиков можно получить даже на прогретой HBM.

Всегда используйте дополнительное охлаждение для оперативной памяти. Так же был замечен положительный эффект от настройки CAD_BUS 20 20 20 20. Система была стабильна впредь до 58 градусов.

  • Изменение в procODT или RTT требуется, когда система не выполняет POST, имеет огромное количество ошибок или происходит BSOD.
  • VRM frequency для DRAM и SOC. Оптимален в диапазоне 350–400 кГц.
  • Одиночные и редкие ошибки можно исправить, изменив tRDWR (с 6 до 9) и tWRRD (с 1 до 4). Обратите внимание, что время должно быть настроено в парах. Пример: tRDWR 6 и tWRRD 2, tRDWR 6 и tWRRD 3, tRDWR 6 и tWRRD 4, tRDWR 7 и tWRRD 1 и т.д.
  • Одиночные и редкие ошибки можно исправить, изменив tRFC. Калькулятор предлагает несколько вариантов для tRFC. Кроме того, не забывайте, что tRC кратно tRFC. Например, tRC = 44 -> tRFC 6 (или 8) * 44; tRFC 2/4 не нужно настраивать для Ryzen.
  • Включение Geardown может улучшить стабильность системы.
  • VDDP может улучшить стабильность системы. Рекомендуемый диапазон: от 855 до 950 мВ. Попробуйте увеличить его с шагом 10–15 мВ. Мне нравится 900 мВ.
  • Отключение spread-spectrum может улучшить стабильность системы.
  • Источником ошибок также может быть Windows. В последнее время Microsoft доказала, что даже калькулятор можно сделать с багами.
  • Увеличение tRCDRD и tRP на 1 может улучшить стабильность и снизить требования к напряжению памяти.
  • Отключенный RTT_NOM иногда будет иметь лучшую стабильность.
  • Увеличение значений RTT_PARK или procODT может улучшить стабильность.
  • Не забудьте следовать правилу tRC = tRAS tRP.
  • CLDO_VDDP. Наилучшие значения: по умолчанию (850 мВ), 950 мВ, 945 мВ, 940 мВ, 915 мВ, 905 мВ, 895 мВ, 865 мВ и 840 мВ.
  • Четные значения для tWRWR SCL и tRDRD SCL могут улучшить стабильность системы. Например, 4-4 или 6-6.
  • Чрезмерный разгон процессора может негативно сказаться на стабильности работы оперативной памяти.
  • CAD_BUS 24 30 24 24 может быть полезен для конфигураций с двумя модулями, а 24-20-24-24 для конфигураций, состоящих из четырех модулей.
  • Следите за новыми прошивками к материнской плате, которые включают обновления AGESA, поскольку новые версии улучшают возможности настройки памяти.
  • Смена местами планок оперативной памяти может положительно повлиять на разгон и стабильность.
  • Существует немало комплектов памяти, в которых один из чипов будет иметь дефект. Отсюда проблема стабильности или разгона. Вероятность встретить такое чудо велика, из 16 модулей у меня было три с дефектами, которые обменивались по гарантии.
  • Существует немало 2-х и 4-х канальных комплектов памяти, в которых один или несколько модулей будет иметь выраженные, отличные от соседей вольт-частотные характеристики.
  • Ручная настройка CAD_BUS timings может облегчить тренировку или улучшить стабильность системы.
Как быть Леди:  талант — Викисловарь

Пробуем повысить частоты

Этот раздел актуален только если вы ещё не достигли пределов возможностей своей материнской платы, чипов и IMC. 

И этот раздел не для тех, у кого проблемы со стабилизацией частот в ожидаемом диапазоне.
1.

Intel:

Ryzen 3000:

2. Увеличьте основные тайминги до 18-22-22-42.3. Повысьте вольтаж DRAM до 1,45 В.4. Выполните шаги 4-7 из раздела «Нахождение максимальной частоты».5. Выполните оптимизацию («подтягивание») таймингов.


Дополнительно: Тайминги и частота — разрушаем мифы

Стенд

Тестовый стенд был следующий:

  • процессор: AMD Ryzen 2700X;
  • система охлаждения: NZXT Kraken X62;
  • материнская плата: MSI X470 GAMING M7 AC (UEFI V1.51);
  • память №1: 2x8GB G.Skill Sniper X 3600C19 (Hynix CJR 18 nm, Single Rank);
  • память №2: 2x8GB G.Skill Sniper X 3400C16 (Samsung B-die 20 nm, Single Rank);
  • память №3: 2x16GB G.Skill Trident Z 3000C14 (Samsung B-die 20 nm, Dual Rank);
  • видеокарта: MSI GeForce GTX 1080 Ti GAMING X;
  • накопитель: Samsung 970 Pro 512GB;
  • блок питания: Corsair HX750i;
  • операционная система: Windows 10 64-bit Fall Creators Update;
  • драйверы: NVIDIA GeForce 417.35 WHQL.

Все опубликованные пресеты имеют полную стабильность. Не забывайте, что нет универсальной предустановки. Различные топологии материнских плат, бининг памяти и процессора — это всегда лотерея. Если нет стабильности, сначала попробуйте соседние напряжения для SOC и DRAM.

Дополнительную информацию и пресеты настройки можно найти в программе DRAM Calculator for Ryzen.

Терминология

Ниже приведен список технических терминов, относящихся к разгону памяти с процессором Ryzen. Последний использует стандартную архитектуру памяти DDR4, поэтому вы можете быть знакомы с некоторыми из этих терминов. Некоторые другие термины являются новыми и характерными для UEFI материнских плат платформы AM4.

SOC Voltage — напряжение контроллера памяти. Предел 1,2 В.

DRAM Boot Voltage — напряжение, на котором происходит тренировка памяти при запуске системы. Лимит: до 1,45–1,50 В.

VDDP Voltage — это напряжение для транзистора, который конфигурирует содержимое оперативной памяти. Лимит: до 1,1 В.

VPP (VPPM) Voltage — напряжение, которое определяет надежность доступа к строке DRAM.

CLDO_VDDP Voltage — напряжение для DDR4 PHY на SoC. DDR4 PHY, или интерфейс физического уровня DDR4, преобразует информацию, которая поступает из контроллера памяти в формат, понятный модулям памяти DDR4.

Несколько нелогично, что снижение CLDO_VDDP часто может быть более выгодным для стабильности, чем повышение. Опытные оверклокеры также должны знать, что изменение CLDO_VDDP может сдвинуть или устранить дыры в памяти. Небольшие изменения в CLDO_VDDP могут иметь большой эффект, и для CLDO_VDDP нельзя установить значение, превышающее VDIMM –0,1 В. Tсли вы измените это напряжение, то потребуется холодная перезагрузка. Лимит: 1,05 В.

Vref Voltage — источник опорного напряжения оперативной памяти. «Настройка» взаимосвязи контроллера памяти и модуля памяти в зависимости от уровня напряжения, которое рассматривается как «0» или «1»; то есть напряжения, найденные на шине памяти ниже MEMVREF, должны рассматриваться как «0», а напряжения выше этого уровня должны считаться «1».

По умолчанию этот уровень напряжения составляет половину VDDIO (около 0,500x). Некоторые материнские платы позволяют пользователю изменять это соотношение, обычно двумя способами: (1) «DRAM Ctrl Ref Voltage» (для линий управления с шины памяти; официальное название JEDEC для этого напряжения — VREFCA) и (2)

VTT DDR Voltage — напряжение, используемое для управления сопротивлением шины, чтобы достигнуть высокой скорости и поддержать целостность сигнала. Это осуществляется с помощью резистора параллельного прерывания.

PLL Voltage — определяет напряжение питания системы Фазовой АвтоПодстройки Частоты (ФАПЧ или PLL — Phase Locked Loop) и является актуальной лишь для повышения стабильности во время разгона системы с помощью BCLK. Лимит: 1,9 В.

CAD_BUS — САПР командной и адресной шины. Для тех, кто может тренировать память на высоких частотах (>=3466 МГц), но не может стабилизировать ее из-за проблем с сигнализацией. Я предлагаю вам попробовать уменьшить токи привода, связанные с «Командой и адресом» (увеличив сопротивление).

CAD_BUS Timings — задержка трансивера. Значения являются битовой маской (грубой / точной задержки). Аналог RTL/IOL в исполнении AMD. Имеют огромное влияние на тренировку памяти.

procODT — значение сопротивления, в омах, который определяет, как завершенный сигнал памяти терминируется. Более высокие значения могут помочь стабилизировать более высокие скорости передачи данных. Ограничение: нет.

RTT (время приема-передачи) — это время, затраченное на отправку сигнала, плюс время, которое требуется для подтверждения, что сигнал был получен. Это время задержки, следовательно, состоит из времени передачи сигнала между двумя точками.

Настройка, которая отвечает за оптимизацию целостности сигнала. DRAM предлагает диапазон значений сопротивления нагрузки. Конкретное сопротивление приемника выводов DQ, представленное интерфейсу, выбирается комбинацией начальной конфигурации микросхемы и рабочей команды DRAM, если включено динамическое завершение на кристалле.

Geardown Mode — позволяет памяти уменьшать эффективную скорость передачи данных на шинах команд и адресов.

Power Down Mode — может незначительно экономить энергию системы за счет более высокой задержки DRAM, переводя DRAM в состояние покоя после периода бездействия.

BankGroupSwap (BGS) — настройка, которая изменяет способ назначения приложениям физических адресов в модулях памяти. Цель этого регулятора — оптимизировать выполнение запросов к памяти, учитывая архитектуру DRAM и тайминги памяти. Теория гласит, что переключение этого параметра может сместить баланс производительности в пользу игр или синтетических приложений.

Игры получают ускорение при отключенной BGS, а пропускная способность памяти AIDA64 была выше при включенной BGS.

Типы памяти

За последние 10 лет компания Intel посеяла в головах пользователей главный тезис — оперативная память это декоративная заглушка, иногда она имеет подсветку и прикольно выглядит в корпусе, люди перестали задумываться о реальной значимости ОЗУ.

На данный момент на рынке оперативной памяти представлено огромное кол-во вариантов, которые могут нас заинтересовать, но могут оказаться совершенно бесполезными. Какую же выбрать?

Лидером в разгоне является оперативная память на чипах Samsung B-die (20 нм). Эти чипы демонстрируют рекордные показатели частоты/латентности «из коробки». Хочу отметить важный момент, что вам не обязательно покупать набор, на котором будет нарисовано красивые числа вроде 4200 МГц, в большинстве случаев разгон такого комплекта будет сопоставим с набором DDR4-3000 с CL14.

Первыми в списке идут G.Skill Sniper X 3400C16 (F4-3400C16-16GSXW). Это одноранговая (или single rank) память, базовые характеристики нельзя назвать феноменальными, в отличие от результата, который получен после разгона.

Холодная загрузка или двойной старт

Нет пользователей процессоров Ryzen, которые не сталкивались с холодным или двойным стартом (иногда даже с тройным). Я могу сразу заверить вас, что в этом нет ничего плохого. Это тесно связано с тренировкой памяти. Когда система не может запуститься в первый раз, запускается алгоритм, который изменяет некоторые параметры, недоступные пользователю, и пытается запустить систему снова. На это явление могут влиять procODT, RTT и CAD.

Иногда внешний BCLK генерируют двойной старт (система тренируется на внутреннем BCLK, а затем на внешнем ). В любом случае, попробуйте следовать рекомендациям калькулятора.

Так же львиная доля успешной тренировки отводится CAD_BUS Timings. Это сложное название является настройкой задержек приемо-передатчика. Формулами я вас томить не буду, конкретные значения будут предлагаться калькулятором, начиная с версии 1.5.2.

Выводы

Поскольку элемент DRAM состоит из конденсатора, элемент теряет заряд, даже когда к нему нет доступа. Чтобы предотвратить потерю данных, DRAM должен выполнять периодические операции обновления для всех ячеек. Операция обновления возвращает уровень заряда ячейки к ее полному значению.

Современные микросхемы памяти позволяют устанавливать агрессивные временные интервалы благодаря механизму Restore Truncation и ChargeCache.

Микросхемы SDRAM в некотором смысле позволяют выполнять третью и четвертую операции параллельно. Если быть точным, команда перезарядки линии PRECHARGE может быть отправлена за определенное количество тактов x до момента, когда был выпущен последний элемент данных запрошенного пакета, не опасаясь возникновения «сломанной» ситуации в переданном пакете (последнее произойдет, если команда PRECHARGE отправит команды READ с периодом времени меньше x).

Чтобы предотвратить потерю данных в ячейках, вы можете увеличить напряжение DRAM или изменить временные характеристики, которые отвечают за предварительную зарядку и обновление. Регулировка tRP и tRFC будет иметь наибольшее влияние, tWR и tRTP также могут помочь. Я не советую поднимать значение tWR выше 12.

tRC> = tRAS tRP. Для большинства случаев это должна быть оптимальная формула.

tRAS = tRCD tCL. У меня нет четкого определения для этого тайминга, оно может быть равно tRCD tCL, но иногда значительно ниже из-за механизмов, перечисленных выше. Также не стоит забывать и о запасе, пределы которого определяются чисто экспериментальным путем, поскольку каждый чип имеет различные характеристики ячеек. Вот вам один из примеров.

Для высоких частот я использую формулу из первого рисунка. tRAS = tRCD tBL tWR, где tWR тюнингованное, которое равно 12 или 10. tBL для DDR4 всегда равен 4, но контроллер может использовать и 2.

Пример:

Infinity fabric

Для связи между отдельными блоками в процессорах AMD Ryzen используется внутреннее соединение Infinity Fabric, пришедшее на смену шине HyperTransport.

Под блоками подразумевается вычислительные комплексы ЦП (группы до 4 ядер ЦП именуемые CCX). Infinity Fabric имеет свой собственный тактовый домен, который синхронизируется с физической частотой памяти. Поколения Zen 1 и Zen работают в режиме UCLK=MEMCLK.

Конструктивно Infinity Fabric представляет собой 256-битную двунаправленную шину. С ее помощью в шестиядерных и восьмиядерных моделях процессоров Ryzen (архитектуры Zen 1 и Zen ) два четырехъядерных модуля (CCX) обмениваются данными с другими блоками, включая контроллер PCI Express и южный мост.

Infinity Fabric Zen/Zen функционирует на частоте, равной физической частоте системной ОЗУ. Например, если контроллер памяти работает c DDR4-2133 в режиме UCLK=MEMCLK, матрица коммутатора синхронизируется с частотой 1066 МГц (напомню, эффективная частота указана в обозначении памяти). Это означает, что более быстрая память позволяет увеличить пропускную способность внутреннего соединения Infinity Fabric.

Эта технология открывает большие перспективы при создании многоядерных процессоров, таких как Ryzen 3000, о которых мы вскоре с вами поговорим.

Оцените статью
Ты Леди!
Добавить комментарий